

TEST REPORT

Client Name	Shenzhen hpmont technology Co.,Ltd
Name of product	Elevator Integrated Controller
Manufacturer	Shenzhen hpmont technology Co.,Ltd
Trade mark & model	MT70-4T011, MT70-4T015
Test sort	Entrusted Test

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD.

Address: Building 28/29, Shigudong, Xili Industrial Area, Xili Street, Nanshan District, Shenzhen, China

P.C.: 518055

TEL: 86-755-26627338 FAX: 86-755-26627338

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD.

TEST REPORT

Name of sample	Elevator Integrated Controller			Trade mark	/	
Manufacturer	Shenzhen hpmont tec	hnology Co.,L	td	Model/Type	MT70-4T015	i
Client	Shenzhen hpmont technology Co.,Ltd			Sampling method	Sampling by	Manufacturer
Sampler				Amount of samples		
Sampling place			Quantity of samples	1PCS		
Production date	Sampling date			Application date	Jul., 22, 2015	
Test date	Jul., 22, 2015~ Jul., 24, 2015		Environment condition	15∼25°C 4	15∼75%RH	

Sample description:

Model MT70-4T011 and MT70-4T015 are a series of Elevator Integrated Controller. All models have identical circuit except for different output power. According to the differences all tests were performed on MT70-4T015 and the test results should also represent the other models.

The EUT belongs to Category C3, intended to be used in the second environment. The following warning shall be included in the instruction for use:

Warning

This type of PDS is not intended to be used on a low-voltage public network which supplies domestic premises; Radio frequency interference is expected if used on such a network.

For a more detailed features description about the EUT, please refer to Installation Manual.

Test item:

Mains terminal disturbance voltage, Radiated disturbance, Electrostatic discharge immunity, Radiated-radio frequency electromagnetic field immunity, Electrical fast transient/burst immunity, Surge immunity, Immunity to conducted disturbances induced by RF fields

Reference documents:

EN 61800-3:2004+A1:2012 Adjustable speed electrical power drive systems – Part 3: EMC requirements and specific test methods

Summary:

The samples according to the standard requirements to Mains terminal disturbance voltage, Radiated disturbance, Electrostatic discharge immunity, Radiated-radio frequency electromagnetic field immunity, Electrical fast transient/burst immunity, Surge immunity, Immunity to conducted disturbances induced by RF fields. All testing can comply with the requirement, see the attachment.

Test conclusion:

The EUT's performance complied with the requirement of the standard.

(Stamped by inspection company)

Tested by:	Zhuo Kai	Inspected by:	Zhu Qi	Approved by:	Wa lion	
Date:	Jul.24,2015	Date:	Jul.24,2015	Date:	Jul.24,2015	

Table of Contents

1	General Information	5
	1.1 Description of EUT	5
	1.2 Objective	5
	1.3 Test Date	5
	1.4 Test Standards and Results	6
	1.5 List of Equipments Used	7
2	Emission Test	8
	2.1 EUT Setup and Operating Conditions	8
	2.2 Mains Terminal Disturbance Voltage Measurement	8
	2.2.1 Limits of Mains Terminal Disturbance Voltage	8
	2.2.2 Test Procedure	8
	2.2.3 Test Setup	9
	2.2.4 Test Result	9
	2.3 Radiated Disturbance Measurement.	12
	2.3.1 Limits of Radiated Disturbance.	12
	2.3.2 Test Procedure	12
	2.3.3 Test Setup	13
	2.3.4 Test Result	13
3	Immunity Test	15
	3.1 Performance Criteria	15
	3.2 Immunity tests to high-frequency disturbance	15
	3.2.1 EUT Setup and Operating Conditions	15
	3.2.2 Electrostatic Discharge Immunity Test	15
	3.2.3 Radiated, Radio Frequency Electromagnetic Field Immunity Test	18

Rep No. SET2015-10240

3.2.4 Electrical Fast Transient/Burst Immunity Test	20
3.2.5 Surge Immunity Test	21
3.2.6 Immunity to Conducted Disturbances Induced by RF Fields	22
Appendix I: Photographs of EMC Test Configuration	24

1 General Information

1.1 **Description of EUT**

Product: Elevator Integrated Controller

Model No.: MT70-4T011, MT70-4T015

Brand Name: /

Serial No.: /

Model No.	Rated Power	Input	Output
MT70-4T011	11kW	AC3Ph, 380-460V, 50/60Hz, 29A	AC3Ph, 0-460V, 0-100Hz, 27A
MT70-4T015	15kW	AC3Ph, 380-460V, 50/60Hz, 35A	AC3Ph, 0-460V, 0-100Hz, 33A

Accessories: /

Rating:

NOTE:

- 1. Model MT70-4T011 and MT70-4T015 are a series of Elevator Integrated Controller. All models have identical circuit except for different output power. According to the differences all tests were performed on MT70-4T015 and the test results should also represent the other models.
- 2. The EUT belongs to Category C3, intended to be used in the second environment. The following warning shall be included in the instruction for use:

Warning

This type of PDS is not intended to be used on a low-voltage public network which supplies domestic premises; Radio frequency interference is expected if used on such a network.

3. For a more detailed features description about the EUT, please refer to Installation Manual.

1.2 Objective

Perform ElectroMagnetic Interference (EMI) and ElectroMagnetic Susceptibility (EMS) tests for CE Marking.

1.3 Test Date

Emission: 2015.07.21 ~ 2015.07.21

Immunity: 2015.07.21 ~ 2015.07.23

1.4 Test Standards and Results

The EUT has been tested according to the following specifications:

EMISSION					
Standard	Test Type	Result			
EN 61800-3:2004+A1:2012	Mains terminal disturbance voltage	PASS			
EN 01000-3.2004+A1.2012	Radiated disturbance	PASS			
IMMU	JNITY (EN 61800-3:2004+A1:2012)				
IEC 61000-4-2:2008	Electrostatic discharge immunity	PASS			
IEC 61000-4-3:2010	Radiated, radio frequency electromagnetic field immunity	PASS			
IEC 61000-4-4:2012	Electrical fast transient/burst immunity	PASS			
IEC 61000-4-5:2014	Surge immunity	PASS			
IEC 61000-4-6:2013	Immunity to conducted disturbances induced by RF fields	PASS			

NOTE: The latest versions of basic standards are applied for undated references.

1.5 List of Equipments Used

Description	Manufacturer	Model No.	Calibration due date	Serial No.
Test Receiver	ROHDE&SCHWARZ	ESCI	Jun.10, 2016	1166.5950.03
Test Receiver	ROHDE&SCHWARZ	ESIB26	Jun.10, 2016	A0304218
LISN	SCHWARZBECK	ESH2-Z5	Jun.10, 2016	A0304221
Broadband Ant.	ROHDE&SCHWARZ	HL562	Jun.10, 2016	A0304262
Shield Room	Nanbo Tech	Site 2	May.15,2016	A0301188
Anechoic Chamber	Albatross	EMC 12.8*6.8*6.4(m)	Mar.07, 2016	A0304210
Anechoic Chamber	Albatross	SAC-10MAC 19.6 × 11.8 × 8.55	Mar.08, 2016	A0802520
Signal Generator	ROHDE&SCHWARZ		Jun.10, 2016	A0304261
EMS Antenna	Schwarzbeck	D-69250	Oct.31.2015	STLP9128E-12 4
EMS Antenna	Amplifier Research	AR AT4510	Jun. 10, 2016	A0804550
Power Amplifier	Amplifier Research	50S 1G4A	Jun. 10, 2016	A0804546
Power Amplifier	Amplifier Research	150W1000	/	A0304247
Power Amplifier	Amplifier Research	AR 75A250M	/	A0304255
CDN	ROHDE&SCHWARZ	M5	/	A0304258
Capacitive clamp ROHDE&SCHWARZ		F2301	/	A0304258
EFT/Surge	EM TEST	UCS500N	Jun.10, 2016	A130201094
Test System	EM TEST	CNI503	Jun.10, 2016	A130201095
ESD Test System	EM TEST	ESD30N	Nov.30.2015	A130301203

NOTE: Equipments above have been calibrated and are in the period of validation.

2 Emission Test

2.1 EUT Setup and Operating Conditions

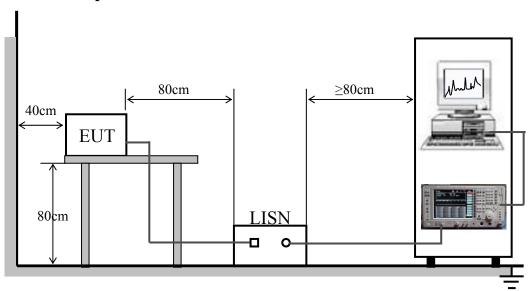
The EUT was powered by 380V AC Mains and connected to a motor with no load.

2.2 Mains Terminal Disturbance Voltage Measurement

2.2.1 Limits of Mains Terminal Disturbance Voltage

	Limits (d	lBμV) C2	Limits (dBµV) C3		
Frequency range (MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.50	79	66	100	90	
0.50 - 5	73	60	86	76	
5 - 30	73	60	90 - 70	80 - 60	

NOTE:


1. The lower limit shall apply at the transition frequencies.

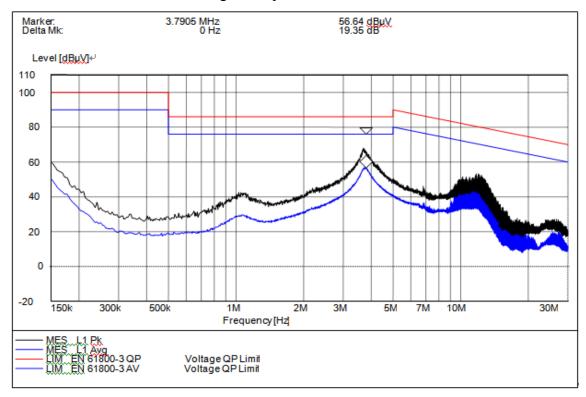
2.2.2 Test Procedure

- a. The EUT was placed 0.4 meters from the conducting wall of shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provide $50\Omega/50\mu H$ of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.

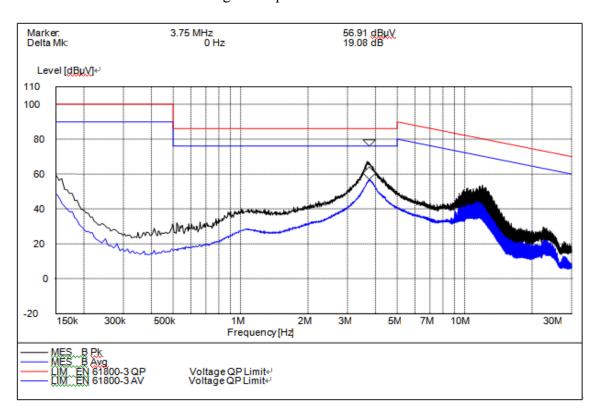
2.2.3 Test Setup

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

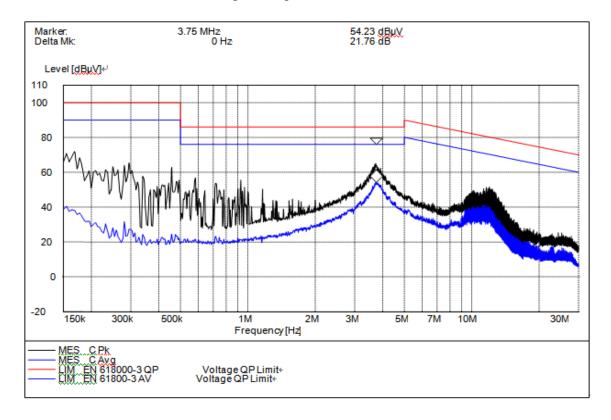
2.2.4 Test Result


N F (MI)		Limit Val	lue (dBµV)	Emission Level (dBµV)		
No.	Freq. (MHz)	QP	AV	QP	AV	
1	0.15-0.5	100	90	<60	NOTE 2	
2	0.5-5	86	76	<70	NOTE 2	
3	5-30	90-70	80-60	<55	NOTE 2	

NOTE:


- 1. QP and AV are abbreviations of the quasi-peak and average individually.
- 2. If the emission levels measured with QP detector are lower than AV limits, there is unnecessary to measure with AV detector.
- 3. The emission levels recorded above is the larger ones of each phase.

1. Mains terminal disturbance voltage, L1 phase



2. Mains terminal disturbance voltage, L2 phase

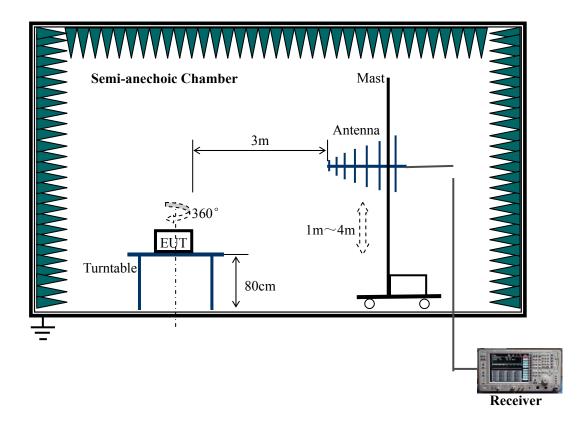
3. Mains terminal disturbance voltage, L3 phase

2.3 Radiated Disturbance Measurement

2.3.1 Limits of Radiated Disturbance

	C2	C3	
Frequency range (MHz)	Quasi peak limits(dBµV/m),	Quasi peak limits(dBµV/m),	
roquency runge (minus)	at 10m measurement	at 10m measurement	
	distance	distance	
30 - 230	40	50	
230 - 1000	47	60	

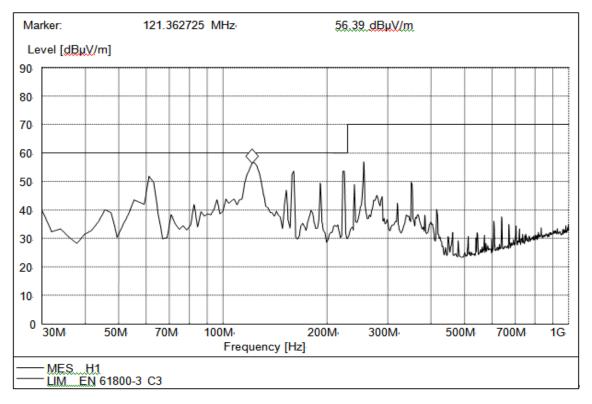
Notes:


- (1) The lower limit shall apply at the transition frequency.
- (2) Additional provisions may be required for cases where interference occurs.
- (3) If the 3 m distance is used, the measurement result obtained shall be normalised to 10 m by subtracting 10 dB from the result.

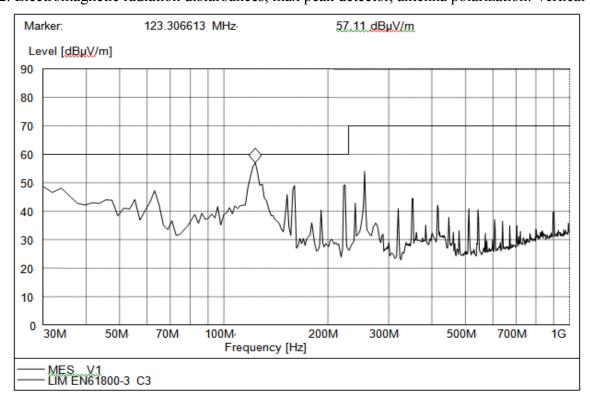
2.3.2 Test Procedure

- a. The EUT was placed on the top of an insulating table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from 1 to 4 meter above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to the heights from 1 to 4 meters and the ratable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detector Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emission that did not have 10dB margin would be retested one by one using the quasi-peak method.

2.3.3 Test Setup


For the actual test configuration, please refer to the related item-Photographs of the Test Configuration.

2.3.4 Test Result


No.	Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	QP Limits (dBμV/m)	Emission Level (dBµV/m)
1	123.13	Н	200	0	60	51.87
2	160.12	Н	200	10	60	50.10
3	221.89	Н	200	90	60	50.58
4	122.94	V	100	180	60	53.18
5	230-1000	H/V	100-400	0-360	70	<57

1. Electromagnetic radiation disturbances, max peak detector, antenna polarization: Horizontal

2. Electromagnetic radiation disturbances, max peak detector, antenna polarization: Vertical

3 Immunity Test

3.1 Performance Criteria

Item	Acceptance (performance) criterion ^a		
	A	В	C
General system performance	No noticeable changes of the operating characteristic. Operating as intended, within specified tolerance	Noticeable changes (visible or audible) of the operating characteristic. Self-recoverable	Shutdown, changes in operating characteristics. Triggering of protective devices ^b Not self-recoverable

a Acceptance criteria A, B, C – False starts are not acceptable. A false start is an unintended change from the logical state "STOPPED" which can make the motor run.

3.2 Immunity tests to high-frequency disturbance

3.2.1 EUT Setup and Operating Conditions

The EUT was powered by 380V AC Mains and connected to a motor with no load.

3.2.2 Electrostatic Discharge Immunity Test

3.2.2.1 Test Specification

Basic Standard:	IEC 61000-4-2
Discharge Impedance	330Ω / $150\mathrm{pF}$
Discharge Voltage:	Air Discharge: 8 kV
	Contact Discharge: 4 kV
Polarity:	Positive / Negative
Number of Discharge:	Minimum 20 times at each test point
Discharge Mode:	Single discharge
Discharge Period:	1-second minimum
Criterion:	В

b Acceptance criterion C – The function can be restored by operator intervention (manual reset). Opening of fuses is allowed for line-commutated converters operating in inverting mode.

3.2.2.2 Test Procedure

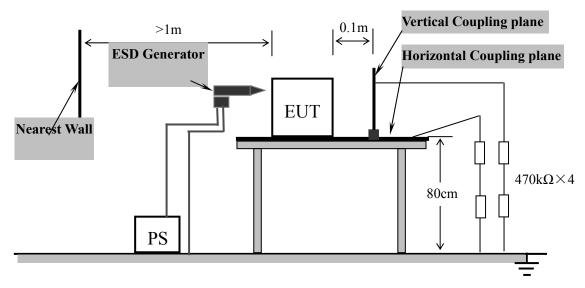
The discharges shall be applied in two ways:

a. Contact discharges to the conductive surfaces and coupling planes:

The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three contact test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

b. Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled selected test point for each such area.


The basic test procedure was in accordance with IEC 61000-4-2:

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were completed.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was

- positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions $0.5m \times 0.5m$) was placed vertically to and 0.1 meters from the EUT.

3.2.2.3 Test Setup

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

3.2.2.4 Test Result

Test Points	Discharge Level (kV)	Discharge Mode	Observation	Comply with Criterion
Display panel	±8	Air	Note(1)	В
Aperture of the cover	±8	Air	Note(1)	В
Buttons	±8	Air	Note(1)	В
Knob	±8	Air	Note(1)	В
Metallic enclosure	±4	Contact	Note(1)	В
Screws	±4	Contact	Note(1)	В
НСР	±4	Contact	Note(1)	В
VCP	±4	Contact	Note(1)	В

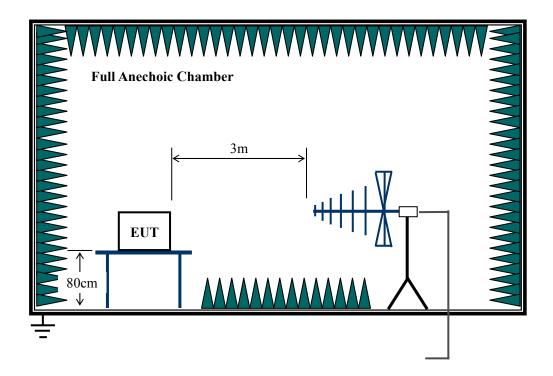
NOTE:

(1). The EUT continued to operate as intended. No degradation of performance was observed.

3.2.3 Radiated, Radio Frequency Electromagnetic Field Immunity Test

3.2.3.1 Test Specification

Basic Standard:	IEC 61000-4-3				
Frequency Range:	80 MHz – 1000MHz	1400MHz-2000MHz	2000MHz-2700MHz		
Field Strength:	10V/m	3V/m	1V/m		
Modulation:	1kHz sine wave, 80%	, AM modulation			
Frequency Step:	1% of fundamental				
Polarity of Antenna	Horizontal and Vertical				
Test Distance:	3m				
Antenna Height:	1.5m				
Dwell Time:	3 seconds				
Criterion:	A				


3.2.3.2 Test Procedure

The test procedure was in accordance with IEC 61000-4-3.

- a. The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b. The frequency range is swept from 80 MHz to 2700MHz with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5×10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. The field strength level was 10V/m, 3V/m, 1V/m.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

3.2.3.3 Test Setup

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

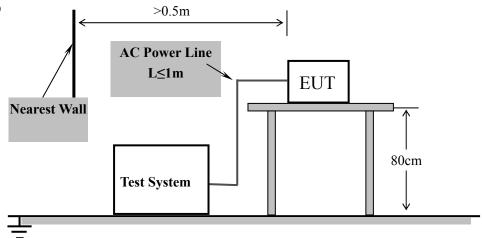
3.2.3.4 Test Result

Frequency	Polarity	Azimuth	Field Strength (V/m)	Observation	Comply with Criterion
80-1000 MHz 1400-2000MHz	V&H	0/90/180/270	10	Note(1)	A
2000-2700MHz			1		

NOTE:

(1). The EUT continued to operate as intended. No degradation of performance was observed.

3.2.4 Electrical Fast Transient/Burst Immunity Test


3.2.4.1 Test Specification

Basic Standard:	IEC 61000-4-4
Test Voltage:	a.c. power port: 2 kV, signal port: 1kV, power interfaces:1kV
Polarity:	Positive/Negative
Impulse Frequency:	5kHz
Impulse wave shape:	5/50ns
Burst Duration:	15ms
Burst Period:	300ms
Test Duration:	Not less than 1 min.
Criterion:	В

3.2.4.2 Test Procedure

- a. The EUT was tested with 2000 volt discharges to the AC power input leads, power interfaces, signal interfaces.
- b. Both positive and negative polarity discharges were applied.
- c. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- d. The duration time of each test sequential was 1 minute.
- e. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.
- f. The coupling clamp was used when testing on signal ports. The cable shall be placed in the centre of the coupling clamp.

3.2.4.3 Test Setup

For the actual test configuration, please refer to Appendix I: Photographs of the Test

Configuration.

3.2.4.4 Test Result

Test Point Power port	Polarity	Test Level (kV)	Observation	Comply with Criterion
a.c. power port	+/-	2	Note (1)	В
power interfaces	+/-	1	Note (1)	В
Signal port	+/-	1	Note (1)	В

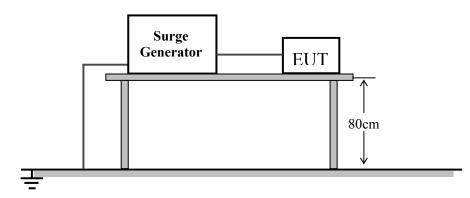
NOTE:

(1). The EUT continued to operate as intended. No degradation of performance was observed.

3.2.5 Surge Immunity Test

3.2.5.1 Test Specification

Basic Standard:	IEC 61000-4-5		
Waveform:	Voltage 1.2/50 μs; Current 8/20 μs		
Test Voltage:	a.c. power port, line to line 1 kV, line to earth 2 kV		
Polarity:	Positive/Negative		
Phase Angle:	0°, 90°, 180°, 270°		
Repetition Rate:	60sec		
Times:	5 time/each condition.		
Criterion:	В		


3.2.5.2 Test Procedure

- a. The EUT and the auxiliary equipment were placed on a table of 0.8m heights above a metal ground reference plane. The size of ground plane is greater than 1m×1m and project beyond the EUT by at least 0.1m on all sides. The ground plane is connected to the protective earth. The length of power cord between the coupling device and the EUT was less than 2 meters (provided by the manufacturer).
- b. The EUT was connected to the power mains through a coupling device that directly couples the surge interference signal. The surge noise was applied synchronized to the voltage phase at the zero crossing and the peak value of the AC voltage wave (positive and negative).
- c. The surges were applied line to line and line(s) to earth. When testing line to earth the test voltage was applied successively between each of the lines and earth. Steps up to the test level specified increased the test voltage. All lower levels including the selected test level

were tested. The polarity of each surge level included positive and negative test pulses.

3.2.5.3 Test Setup

For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

3.2.5.4 Test Result

Coupling Line	Polarity	Voltage (kV)	Observation	Comply with Criterion
a.c. power Line to Line	+/-	1	Note (1)	В
a.c. power Line to Earth	+/-	2	Note (1)	В

NOTE:

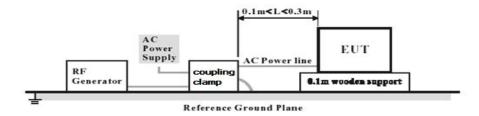
(1). The EUT continued to operate as intended. No degradation of performance was observed.

3.2.6 Immunity to Conducted Disturbances Induced by RF Fields

3.2.6.1 Test Specification

Basic Standard:	IEC 61000-4-6	
Frequency Range:	0.15 MHz – 80 MHz	
Field Strength:	10V	
Modulation:	1 kHz Sine Wave, 80%, AM Modulation	
Frequency Step:	1% of fundamental	
Coupled Cable:	a.c. power line, signal port	
Coupling Device:	Capacitive Clamp-F2301, CDN M5	
Criterion:	A	

3.2.6.2 Test Procedure


- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. The test shall be performed with the test generator connected to each of the coupling and

decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

- c. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80% amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate shall not exceed 1.5×10⁻³ decades/s. The step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value where the frequency is swept incrementally.
- d. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequencies and harmonics or frequencies of dominant interest, shall be analyzed separately.
- e. Attempts should be made to fully exercise the EUT during test, and to fully interrogate all exercise modes selected for susceptibility.

3.2.6.3 Test Setup

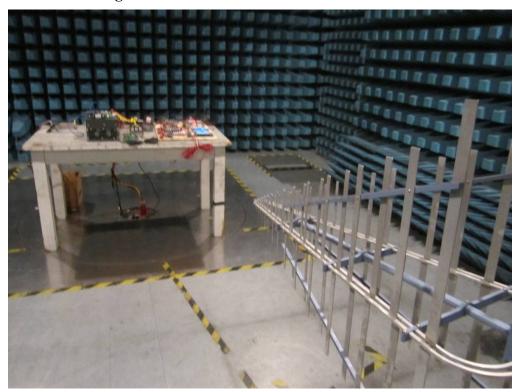
For the actual test configuration, please refer to Appendix I: Photographs of the Test Configuration.

3.2.6.4 Test Result

Test Point	Frequency	Field Strength	Observation	Comply with criterion
		(Vrms)		
a.c. power port	0.15 -80 MHz	10	Note(1)	A
power interfaces	0.15 -80 MHz	10	Note(1)	A
Signal port	0.15 -80 MHz	10	Note(1)	A

NOTE:

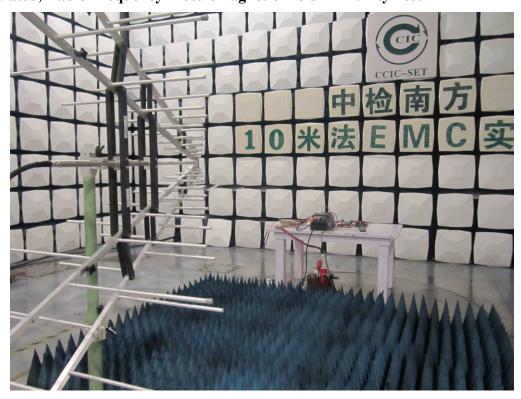
(1). The EUT continued to operate as intended. No degradation of performance was observed.



Appendix I: Photographs of EMC Test Configuration

1. Mains Terminal Disturbance Voltage Measurement

2. Radiated Field Strength Measurement



3. Electrostatic Discharge Immunity Test

4. Radiated, Radio Frequency Electromagnetic Field Immunity Test

5. Electrical Fast Transient/Burst Immunity Test, Surge Immunity Test

6. Immunity to Conducted Disturbances Induced by RF Fields

STATEMENT

- 1. The test report is invalid without stamp of laboratory.
- 2. The test report is invalid without signature of person(s) testing and authorizing.
- 3. The test report is invalid if erased and corrected.
- 4. Test results of the report is valid to the test samples if sampling by client.
- 5. \bigstar " item to be outside the scope of authorized by CNAS.
- 6. The test report shall not be reproduced except in full, without written approval of the laboratory.
- 7. If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address: Building 28/29, Shigudong, Xili Industrial Area, Xili Street, Nanshan District, Shenzhen, China

P.C.: 518055

 TEL: 86-755-26627338
 FAX: 86-755-26627338

 Internet: http:// www.ccic-set.com
 E-Mail: manager@ccic-set.com